
International Journal of Social Science and Human Research

ISSN (print): 2644-0679, ISSN (online): 2644-0695

Volume 07 Issue 11 November 2024

DOI: 10.47191/ijsshr/v7-i11-18, Impact factor- 7.876

Page No: 8275-8299

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8275

How to Measure the Productivity of a Software Quality

Engineer

Donald L. Buresh, Ph.D., Esq.

Morgan State University

ABSTRACT: This paper critically examines COBOL85 compiler software quality assurance project from the unintentional

perspective of Total Quality. In 1988, when this project occurred, the author was not associated with TQM in any way or had any

training in, or knowledge about, Total Quality. The project took place 36 years ago. The company Prime Computer, Inc. no longer

exists, and the individuals involved have long since gone their separate ways. An unquestionable comfort can be derived from

discussing a project that does not violate confidentiality in any way whatsoever. In 1988, this author was hired as a consultant to

manage the software quality assurance effort. The charge was to significantly increase productivity in a relatively short period so

that the COBOL85 compiler could be released to Prime’s customers on time. This author was directly responsible for increasing the

project's productivity by 40 percent over 14 weeks, while the association with the project lasted a little over a year. Unfortunately,

MAI Basic Four attempted a hostile takeover of Prime, approximately three-fourths of the way through the project. Due to financial

considerations and because Prime management decided to abandon their mini-computer business entirely, the quality assurance

effort finished not with a bang but with a whimper. The author was then relieved of management responsibilities so that the company

could save money. The last remaining software quality assurance consultant completed his work, and the COBOL85 compiler finally

went to market. Because of the lack of managerial commitment, the compiler never met the expectations of the individuals dedicated

to bringing to market a quality product. At the time, the author had no formal or informal training or knowledge of TQM whatsoever

but did have an understanding of how a process works. The author was convinced that the process he was hired to oversee could

experience dramatic improvements in productivity in a relatively short period, which could be construed as a matter of faith or

possibly overconfidence. He achieved what he set out to do.

KEYWORDS: COBOL85, Plan-Do-Check-Act Cycle, Statistical Software Quality Assurance, Total Quality Management, WV

Model

INTRODUCTION

 This paper aims to critically examine a software quality assurance project from the unintentional perspective of Total

Quality. In 1988, when this project occurred, this author was not associated with TQM in any way or had any training in, or

knowledge about, Total Quality. The project took place 36 years ago. The company Prime Computer, Inc. (Prime) no longer exists,

and the individuals involved have long since gone their separate ways. Thus, an unquestionable comfort can be derived from

discussing a project that does not violate confidentiality in any way whatsoever.

 In 1988, this author was hired as a consultant to manage the software quality assurance effort. The charge was to

significantly increase productivity in a relatively short period so that the COBOL85 compiler could be released to Prime’s customers

on time. This author was directly responsible for increasing the project's productivity by 40 percent over 14 weeks, while the

association with the project lasted a little over a year.

 Unfortunately, MAI Basic Four attempted a hostile takeover of Prime, approximately three-fourths of the way through the

project. Due to financial considerations and because Prime management decided to abandon their mini-computer business entirely,

the quality assurance effort finished not with a bang but with a whimper.1 The author was then relieved of management

responsibilities so that the company could save money. The last remaining software quality assurance consultant completed his

work, and the COBOL85 compiler finally went to market. Because of the lack of managerial commitment, the compiler never met

the expectations of the individuals dedicated to bringing to market a quality product.

1 T. S. Elliot, The Hollow Men, Owl Eyes (1925), available at https://www.owleyes.org/text/the-hollow-men/read/text-of-the-

poem#root-42.

https://doi.org/10.47191/ijsshr/v7-i11-18
file:///C:/Users/DC/Downloads/2.docx
http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8276

 This paper analyzes the software quality assurance effort of the COBOL85 compiler by employing the Shiba’s WV Model

(WV Model)of systematic improvement, a variant of Kawakita’s W Model (W Model).2 This case study will attempt to demonstrate

that the WV Model is, in some sense, canonical and that knowledge of its workings is intrinsic to process improvement. Although

TQM training is essential and should never be discounted, the fact that this author independently discovered the principles of Total

Quality lends credence to the notion that quality is inherent in the process under consideration and, in general, any process being

conducted.

 At the time, this author had no formal or informal training or knowledge of TQM whatsoever but did have an understanding

of how a process works. This author was convinced that the process he was hired to oversee could experience dramatic improvements

in productivity in a relatively short period, which could be construed as a matter of faith or possibly overconfidence. Even so, with

these introductory remarks, this case study will begin.

TOTAL QUALITY MANAGEMENT

 This section highlights total quality management. It also discusses the Total Quality methodology and describes its

evolution. The following section discusses the four common threads that weave through any successful Total Quality

implementation, including focusing on customers, seeking continuous improvement, requesting total staff participation, and

participating in societal learning. The third section reveals that Total Quality can be viewed from an individual, workgroup,

organization, or region of industry perspective. Finally, the fourth section describes the WV Model and its relationship to the Plan-

Do-Check-Act (PDCA) cycle.

An Evolving Methodology

 The study of Total Quality began in the 1920s and 1930s at Western Electric in Cicero, Illinois.3 The Bell Telephone

Company needed to produce reliable telephones for the burgeoning communications network they created. Walter Shewhart was

mainly responsible for implementing statistical quality control procedures at the firm.4 W. Edwards Deming, one of Shewhart’s co-

workers and the father of Total Quality, traveled to Japan to teach the Japanese the principles he had learned at Western Electric.5

In a country devastated by war, the Japanese readily adopted Deming’s methods and produced quality products on time.6 The rest

is history, and Japanese products are world-renowned for their quality.

 According to Shiba et al., the four levels of quality are fitness to standard, fitness to use, fitness to cost, and fitness to latent

requirements.7 Fitness to standard means that a product is built according to specifications.8 The weaknesses of fitness to standard

are that it assumes that quality can only be achieved through inspection, and neglects the marketplace's needs. Both of these

weaknesses exist in product development in the high-technology arena.9 Fitness to use is the means to ensure that a product satisfies

the market's needs.10 Like fitness to standard, the weakness of fitness to use is that it is achieved through inspection. The second

weakness of fitness is that a company's competitive advantage is only temporary.11 Fitness to cost means high quality and low cost

and is the essential characteristic of total quality.12 In order to achieve this level of quality, a company must examine its production

system and look for ways to improve its processes. These changes can be continuous improvement or fundamental reinvention.13

The only weakness of fitness to cost is that competitors can create similar kinds of products that are also reliable, functional, and

inexpensive to produce.14 Fitness to latent requirements is a way of meeting a customer’s needs before they know they exist.15 Two

famous examples are the Polaroid Land camera and the Sony Walkman, both of which satisfied the latent needs of their respective

customers. A weakness for companies that meet fitness to latent requirements is that they may not be able to adjust quickly enough

to market needs.16

2 SHOJI SHIBA, ALAN GRAHAM, A. & DAVID WALDEN, A NEW AMERICAN TQM: FOUR PRACTICAL REVOLUTIONS IN

MANAGEMENT (Productivity Press 1993) at 48.
3 ROGER G. SCHROEDER, OPERATIONS MANAGEMENT: DECISION MAKING IN THE OPERATIONAL FUNCTION (McGraw-Hill, Inc.1993)

at 72.
4 Id. at 120.
5 MARY WALTON, THE DEMING MANAGEMENT METHOD (Perigree Books, 1986) at 10-13.
6 W. EDWARDS DEMING, OUT OF THE CRISIS (Massachusetts Institute of Technology, Center for Advanced Educational Services

1982).
7 Shoji Shiba et al., supra, note 2 at 3-12.
8 Id. at 4-5.
9 Id.
10 Id. at 5-7.
11 Id.
12 Id. at 8.
13 Id. at 9-10.
14 Id.
15 Id. at 11.
16 Id. at 12.

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8277

 Shiba et al. recognized that Total Quality is a dynamic rather than a static concept that will continue to evolve as businesses

and products change.17 Since companies make decisions based on their corporate culture and how they perceive themselves, the

notion of fitness to corporate culture seems to encapsulate this idea.18 Furthermore, stakeholders are increasingly pressing firms to

improve their work environment and the fitness of their products and manufacturing processes. Shiba et al. called this phenomenon

fitness for the societal and global environment, where fitness to latent requirements is expanded to include the environment in which

the customer lives.19

Management Thinking

 Although companies implement Total Quality management differently, four common threads weave through any successful

implementation.20 They include:

 Focusing on customers;

 Seeking continuous improvement;

 Requesting total staff participation; and

 Participating in societal learning.

Companies dedicated to Total Quality focus on their customers to satisfy their needs.21 In other words, they can react quickly,

directing their limited resources to changing customer needs. Another characteristic of an organization devoted to Total Quality is

that it continuously seeks to improve the quality of its products and services.22 Continuous improvement is essentially a restatement

of the scientific method, in which facts are analyzed, actions are based on facts, and results are tested empirically.23 Furthermore,

firms engaged in total quality requests that every employee, both managers and individual contributors, participate in continuously

improving the company’s products and services to optimize customer satisfaction.24 If all of an organization's capabilities are

involved, there is a greater probability of success. Finally, organizations involved in Total Quality need to collaborate with

competitors and others to avoid reinventing methods, implement quality practices quickly, and create a quality culture to ensure that

it is the norm rather than merely a passing fancy.25

Underlying Values of Practice

 Implicit in the four different types of management thinking is the corresponding four ways to practice Total Quality. They

include the:26

 Individual;

 Workgroup;

 Organization; and

 Region or industry.

Total Quality management must be practiced at the individual level to transform workers' attitudes from just doing their jobs to

satisfying their customers by providing them with the tools to do so.27 The idea is to bring the notion of customer/supplier

relationship to every individual in a firm so that there is a shift from just carrying out daily tasks to performing daily work and

effecting continuous improvement.28 To ensure that the shift takes place, systematic labor is involved.

 At the workgroup level, the daily work and the continuous improvement work must be unified so that the focus is on

the process.29 This encourages mutual learning and teamwork by creating an environment where one cannot occur without the other,

and both are integral to the job. According to Shiba et al., innovative improvements should be integrated with corporate goals at the

organizational level.30 By practicing Total Quality company-wide, all of the firm's resources are mobilized to pursue quality

systematically. At an industry-wide, regional, or national level, the practice of total quality is focused on ensuring that the relevant

17 Id. at 26.
18 Id.
19 Id. at 26-27.
20 Id. at 28.
21 Id.
22 Id.
23 Id.
24 Id. at 29.
25 Id.
26 Id.
27 Id.
28 Id. at 30.
29 Id.
30 Id.

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8278

culture supports the total quality efforts of the firm.31 This support can come from informal networking, collaboration for mutual

gain, and the transfer of successful quality practices. In Japan, the Deming Award encourages nationwide awareness about quality,32

while the Baldrige Award performs the same function in the United States.33 The idea is to promote the diffusion of total quality

into the economic ecosphere so that customers from all walks of life benefit from the experience.

The WV Model

 By focusing on the process that produces the desired results, one can decide why a process produces the actual results and

how this information can be used to improve the process. This is called management by process and is defined below.34

 Set new or revised goals;

 Develop an implementation plan for accomplishing the goals

 Develop a plan for measuring whether the implementation plan is followed;

 Execute the implementation and measurement plan;

 Monitor the results and adherence to the implementation plan;

 Analyze the reasons for poor adherence to the implementation plan or poor results; and

 If necessary, begin the process all over again.

 This is how management by process works. Set goals and then develop a plan to implement these goals. Create a method

for measuring whether the plan is followed. Execute the plan and the measurement tool. Check the results and ensure adherence to

the plan. Lastly, analyze the implementation and measurement plans to see if they worked. The implicit idea behind management

by process is that “any activity can be improved if you systematically plan the improvement, understand the current practice, plan

solutions and implement them, analyze the result and its causes, and cycle around again.”35

 The idea behind continuous improvement is that improvement is a problem-solving process. This process is divided into

systematic or scientifically based improvement and iterative improvement.36 Systematic improvement is based on the use of the

scientific method, while iterative improvement is concerned with cycling back to work on the following problem or with continuing

to improve an already improved process.37

 Shiba et al. (1993) observed that continuous improvement differs from incremental improvement, a methodology that

assumes a process is near-optimal performance and only needs minor adjustments to achieve the efficient frontier.38 In contrast,

continuous improvement is concerned with why a process behaves sub-optimally and not how far away it is from its production

possibility frontier. Thus, the definition of continuous improvement is:39

Continuous

Improvement

Systematic

Improvement

Iterative

Improvement

Figure 1. Definition of Continuous Improvement

 The WV method of systematic improvement modifies Kawakita's W model and describes the problem-solving process as

alternating from thought (rumination, planning, and analyzing) and experience (collecting data, interviews, experiments, and

measurements). The name of the WV Model comes from traversing between these two levels over time and is pictured below:40

31 Id.
32 JAMES R. EVANS, & WILLIAM M. LINDSAY, THE MANAGEMENT AND CONTROL OF QUALITY, (South-Western College Publishing

4th ed. 1999).
33 Id.
34 Shoji Shiba et al., supra, note 2 at 45-47.
35 Id.
36 Id. at 47-48.
37 Id.
38 Id.
39 Id.
40 Id. at 49-50.

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8279

Figure 2. Problem-Solving Using the WV Model

 The WV Model can also illustrate the different types of improvement: process control, reactive improvement, and proactive

improvement.41 Process control means monitoring a process to ensure it works correctly and adequately aligning it if necessary.42

Reactive improvement deals with a process that is not good enough or weak.43 Proactive improvement is about sensing a problem,

exploring the situation, formulating the problem, and then improving the process.44

 The WV Model travels from the level of thought to the level of experience by:

 Sensing a problem;

 Choosing a specific improvement activity;

 Planning a solution; and

 Standardizing the solution.

 The WV Model is also known as the Plan-Do-Study-Act (PDSA) cycle. It is an iterative problem-solving principle where

improvements are made step-by-step and where the cycle is repeated many times:45

Figure 3. Plan-Do-Check-Act Cycle

41 Id. At 49-54.
42 Id.
43 Id.
44 Id.
45 Mary Walton, supra, note 5 at 86.

Sense

Problem

Choose specific

improvement

activity

Plan

solution

Standardize

solution

Data Data Data

Level of
Thought

Level of

Experience

Control

Reactive

Proactive

1. Plan

2. Do 3. Check

4. Act

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8280

In planning, the questions include what must be accomplished, the desirable changes, what new observations are needed, and how

the observations will be used. In doing so, there is the search for data to answer the questions in the previous step or collect data on

a small scale to determine the effect of the change. In checking, the purpose is to observe the effect of the change, and the last step

is to study the results and learn from what was done. The key to acting is to transform how people think about their work to help

satisfy the customer's needs, whether inside or outside the organization.

While managing the creation of the test bed for the COBOL85 compiler, this author, by accident, followed the PDSA cycle

to improve the production of test cases. The key to the discovery was understanding the value of employing the scientific method.

This came from years of mathematics, philosophy, and economics training and working part-time in a factory as an undergraduate

and graduate student to pay tuition and have some money to spend. Training in this environment consisted of watching others work

and doing the same.

COBOL85 QUALITY ASSURANCE EFFORT

 This section discusses the COBOL85 quality assurance effort at Prime. The first subsection highlights how the author

discovered the problem. The second subsection talks about selecting specific improvements. The third subsection addresses how

the author planned a solution. The fourth subsection deals with standardizing the solution. The final subsection shows how the

solution selected solved the software quality assurance productivity problem.

Sensing the Problem

 In 1988, this author managed the computer consultants that constructed COBOL85 test cases used in quality assuring the

COBOL85 compiler for Prime and was hired as a consultant a quarter of the way into the project with the sole purpose of increasing

the production of test cases so that the compiler could be released in a timely manner. During this time at Prime, the current test

case production effort was analyzed, new production processes were implemented and improved upon, and a statistical scheduling

methodology to measure the results of our work was employed.

 The first task was to become familiar with the ANSI Committee's manual for COBOL85. Prime management was

interviewed to find out how they felt about the problem. They explained that the COBOL85 test cases took too long to generate.

The original Test Plan projected that each test case would take, on average, 2.5 person-hours to generate, while the actual time was

somewhere around 8.5 person-hours. This discrepancy was causing a severe delay in bringing the COBOL85 compiler to market,

and it was the essence of this author's problem.

 The next step was to interview the other consultants regarding the project. Their first reaction was that Prime management

was unreasonable and demanding too much from them. The consultants said the project was delayed because Prime management

wanted too many changes in the mini-specs and the test programs. They stated that Prime was not following the tenets contained in

the approved Test Plan. After interviewing each consultant and reading the original Test Plan, it was discovered that it committed a

grave error of omission since it called for only the following steps to take place:

 Analysis, specification, and tracking of a test case by QA

 Review of the analysis and specification by Prime technical management

 Approval of the analysis and specification by Prime technical management

 Coding and debugging of a test case by QA

 Approval of the test case by Prime technical management

 Integration of a test case by QA into Prime’s pre-existing COBOL85 test bed

These steps were missing the iterative opportunities for Prime management to adjust the analysis, specification, and source code for

an individual test case.

Choosing Specific Improvements

 In understanding the quality assurance effort of the COBOL85 compiler, it became apparent that the activities needed to

be correctly specified to maximize the effectiveness that this author was managing. Although it goes without saying, a client is

always sensitive to the amount of money expended on a contract. The technically oriented Prime employees had control over the

number of test cases needed to test the COBOL85 compiler since they were the individuals who approved the test case specifications.

The dollars per hour were fixed by the contracts signed by Prime and the contracting agency representing the consultants. The only

variable that could be controlled was the number of person-hours worked to generate an approved test case. Therefore, the equation

in Figure 4 was particularly relevant.

Dollars
Dollars

per Hour

Hours per

Test Case

Number of

Test Cases

Figure 4. Breakdown of Project Dollars into Components

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8281

Since the hours per approved test case were currently at 8.5 person-hours, it was important to reduce this number significantly in a

relatively short period of time.

 It was imperative to model correctly the process of specifying a test case, generating the code, getting it approved by the

technical people at Prime, and then putting the test case into the test bed. The three sub-cycles and the steps contained in each sub-

cycle were:

 First Sub-Cycle

o Analysis, specification, and tracking of a test case by QA

o Review of the analysis and specification by Prime technical management

o Revision of the analysis and specification by QA; and

o Approval of the analysis and specification by Prime technical management

 Second Sub-Cycle

o Coding and debugging of a test case by QA

o Review of a test case by QA

o Review of a test case by Prime technical management

o Revision of a test case by QA

o Approval of the test case by Prime technical management

 Third Sub-Cycle

o Integration of a test case by QA into Prime’s pre-existing COBOL85 test bed

 The experience taught me that the first sub-cycle, which dealt with the analysis and specification of a test case, typically

occurred three times. The second sub-cycle, which focused on generating a test case, usually experienced two iterations. The third

sub-cycle is not a sub-cycle but a one-time event since it integrates a test case into the COBOL85 test bed. After correctly modeling

the process, it was estimated that it took approximately 5.0 person-hours on average for a test case to travel from inception to the

test bed.

Planning a Solution

 The next step was to examine how the consultants generated a test case to achieve the expected number of person-hours

per approved test case. It was discovered that the consultants generally were not using previously approved test cases to generate

new test cases. Furthermore, the naming conventions for storing test cases were not based on the associated mini-specifications

written and approved during the analysis sub-cycle. The consultants resisted any changes in their work habits, feeling that they were

already working at their maximum and that the real problem was with Prime management. This author implemented the necessary

changes using long-suffering diplomacy, decreasing the number of person-hours per approved test case.

 Another problem encountered was developing milestone schedules for Prime management. This author wanted to use a

mild form of statistics to generate schedules so that Prime management could coordinate compiler development with test case

production. Many hours were spent convincing both Prime management and the consultants actually writing the test cases that

statistics had a place in quality assurance. After several seminal memos, Prime management approved the proposed methodology

in writing and was grudgingly accepted by the individual consultants.

 In the preceding paragraphs, the measure of the average number of person-hours per approved test case was mentioned.

This measure seemed so simple at the time. Similar test cases were defined in mini-specifications. There were six or seven mini-

specifications to a milestone, and this author and the other consultants were paid at the end of each milestone. Since the consultants

refused to write down the number of hours they worked on any test case, measuring the actual number of person-hours expended

was difficult. However, the number of test cases and billed hours were known for each milestone. Using this data, it was

straightforward to calculate the average number of person-hours per approved test case.

 Assuming a normal probability distribution, the only thing needed was to calculate a standard deviation. Because the

consultants refused to record the time worked on a particular test case, this author used 20 percent of the mean as an operational

value for the standard deviation. Now, all that was needed was to estimate the number of test cases per mini-specification and then

obtain an agreement with Prime management regarding the number of mini-specifications per milestone. After Prime management

signed off on these two issues, five person-hours per approved test case were employed to derive test case production schedules.

The standard deviation was used to calculate confidence intervals around the estimated schedules. At the end of each milestone, a

report to Prime management was produced, describing the successes and failures encountered in a milestone. What was surprising

was that the workgroup of consultants met the scheduling objectives of every milestone with time to spare.

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8282

Standardizing the Solution

 There was only one issue that remained. Could the production standard of 5.0 person-hours per approved test case be

maintained over the long haul? At first, it was attempted to lower the number of person-hours per approved test case, but this

resulted in temporarily burning out consultants, and thus, this effort was abandoned. Even so, after six months and four milestones,

the average number of person-hours per approved test case stabilized at 5.0 person-hours, plus or minus 0.15 person-hours. This

author was delighted with this result because it demonstrated that one could accurately schedule and measure a significant project

using statistics.

Fitness Addendum

 Since the COBOL85 test cases were the output of the production process, some statements must be made regarding their

fitness. Because the ANSI Committee’s COBOL85 Standard was employed, and with the creation of the various mini-specifications,

it is evident that the test cases fit the standard. Second, since the purpose of the test cases was to exercise the functionality of Prime’s

COBOL85 compiler, it is also clear that the test cases were fit to use. With the increase of productivity to 5.0 person-hours per

approved test case, and together with the formula expressed in Figure 4, it is evident that the test cases fit the cost. Finally,

concluding that the test cases fit the latent requirements is a stretch since they were explicitly stated in the ANSI Committee’s

COBOL85 Standard. However, at the time, mini-computers possessed hardware and operating system (i.e., Primos) specific

features, so the latent requirements for the compiler were that it be consistent with its computing environment. Both Prime

management and the consulting team made every effort to ensure that these latent requirements were explicitly addressed.

MILESTONE DOCUMENTS

 This section outlines the contents of Appendices A, B, and C. Each appendix is discussed in turn/

Appendix A Documents Description

 At the end of each milestone, a report to Prime management was generated, indicating how many test cases were included

and how many person-hours were expended. The document listed any discrepancies between what was projected at the beginning

of the milestone and the actual figures. It also listed any additional test cases included in the milestone, any test case that turned out

to be inappropriate, any hours employed to investigate an upcoming milestone, and any hours used for meetings. Appendix A

contains a sample milestone report.

Appendix B Documents Description

Appendix B documents the revised projections for upcoming milestones. The report details the number of test cases and

person-hours in each mini-specification. This report also analyzed how the person-hours were consumed to derive the number of

person-hours per approved test case for the given milestone. Any estimates of future milestones and base levels were listed in the

next section of the report. The estimates included each activity's expected number of person-hours and one standard deviation from

the mean. On occasion, the only data available were the development times for specific activities. In this case, 0.5 and 0.8

factors were used to provide additional estimates of upcoming activities.

Appendix C Documents Description

 In Appendix C, productivity estimates were calculated for the milestone that occurred prior to the arrival of this author at

Prime. Specific issues that affected the measurement of productivity during this period were discussed in this document. For

example, a project plan was the deliverable for Milestone I. The productivity for Milestone II was 9.4 person-hours per approved

test case, while the productivity for Milestone III was 7.6 person-hours per approved test case. Since this author was hired at the

end of Milestone IV, and the productivity for Milestones IV and V was approximately 7.6 person-hours per approved test case, the

focus of this author’s efforts was on Milestones VI and VII. The productivity for these milestones was 7.25 and 5.0 person-hours

per approved test case. At the end of Milestone VII, productivity had increased by 40 percent. The productivity was then stabilized

at 5.0 person-hours per approved test case so the project team could work effectively. In other words, a constant productivity measure

could be used to estimate the scheduling of future activities accurately.

CONCLUSIONS

 Reflecting on the project, it is essential to note that the author, despite having no prior experience in Total Quality

Management, took on the responsibility of managing the test case generation for Prime's COBOL85 compiler. Formally trained as

a mathematician, philosopher, and economist, the author brought a unique perspective to the project. Having participated in six

quality assurance projects for different companies and products, the author understood the value of statistics and the scientific

method. This commitment to employing these tools in the project demonstrates the author's dedication and expertise.

When three-quarters into the project, MAI Basic Four attempted a hostile takeover of Prime. Due to financial reasons,

Prime management abandoned their mini-computer business, and the quality assurance effort seemed to slow down. After this, the

author was relieved of management responsibilities so the company could save money. The last remaining software quality

assurance consultant completed the test case generation, and the COBOL85 compiler limped to market. Because of the lack of

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8283

managerial commitment, the compiler never met the expectations of the individuals dedicated to bringing it to market and was

deemed a failure. This was unfortunate because, from a technical perspective, the COBOL85 compiler was a world-class product,

more than worthy to take its place in the high-technology arena.

DONALD L. BURESH BIOGRAPHY

Donald L. Buresh earned his Ph.D. in engineering and technology management from Northcentral University. His

dissertation assessed customer satisfaction for both agile-driven and plan-driven software development projects. Dr. Buresh earned

a J.D. from The John Marshall Law School in Chicago, Illinois, focusing on cyber law and intellectual property. He also earned an

LL.M in intellectual property from the University of Illinois Chicago Law School (formerly, The John Marshall Law School) and

an LL.M. in cybersecurity and privacy from Albany Law School, graduating summa cum laude. Dr. Buresh received an M.P.S. in

cybersecurity policy and an M.S. in cybersecurity, concentrating in cyber intelligence, both from Utica College. He has an M.B.A.

from the University of Massachusetts Lowell, focusing on operations management, an M.A. in economics from Boston College,

and a B.S. from the University of Illinois-Chicago, majoring in mathematics and philosophy. Dr. Buresh is a member of Delta Mu

Delta, Sigma Iota Epsilon, Epsilon Pi Tau, Phi Delta Phi, Phi Alpha Delta, and Phi Theta Kappa. He has over 25 years of paid

professional experience in Information Technology and has taught economics, project management, negotiation, managerial ethics,

and cybersecurity at several universities. Dr. Buresh is an avid Chicago White Sox fan and keeps active by fencing épée and foil at

a local fencing club. Dr. Buresh is a member of the Florida Bar.

LIST OF ABBREVIATIONS

Abbreviation Description

PDCA Plan-Do-Check-Act

Prime Prime Computer, Inc.

W Model Kawakita’s W Model

WV Model Shiba’s WV Model

MISCELLANEOUS CONSIDERATIONS

Author Contributions: The author has read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Acknowledgments: Many thanks to Leizza Buresh for all her efforts in editing this paper. The author also thanks Dr. M. Riaz Kahn

who suggested to me many years ago that I publish this paper. Any remaining issues are mine.

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8284

APPENDIX A: TYPICAL MILESTONE REPORT

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8285

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8286

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8287

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8288

APPENDIX B TYPICAL BASE LEVEL PROJECTION REPORT

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8289

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8290

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8291

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8292

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8293

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8294

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8295

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8296

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8297

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8298

APPENDIX C: PRODUCTIVITY MEASURES REPORT FOR THE FIRST THREE MILESTONES

http://www.ijsshr.in/

How to Measure the Productivity of a Software Quality Engineer

IJSSHR, Volume 07 Issue 11 November 2024 www.ijsshr.in Page 8299

REFERENCES

1) JAMES R. EVANS, & WILLIAM M. LINDSAY, THE MANAGEMENT AND CONTROL OF QUALITY, (South-Western College

Publishing 4th ed. 1999).

2) MARY WALTON, THE DEMING MANAGEMENT METHOD (Perigree Books, 1986).

3) ROGER G. SCHROEDER, OPERATIONS MANAGEMENT: DECISION MAKING IN THE OPERATIONAL FUNCTION (McGraw-Hill,

Inc.1993).

4) SHOJI SHIBA, ALAN GRAHAM, A. & DAVID WALDEN, A NEW AMERICAN TQM: FOUR PRACTICAL REVOLUTIONS IN

MANAGEMENT (Productivity Press 1993).

5) T. S. Elliot, The Hollow Men, Owl Eyes (1925), available at https://www.owleyes.org/text/the-hollow-men/read/text-of-

the-poem#root-42.

6) W. EDWARDS DEMING, OUT OF THE CRISIS (Massachusetts Institute of Technology, Center for Advanced Educational

Services 1982).

There is an Open Access article, distributed under the term of the Creative Commons

Attribution – Non Commercial 4.0 International (CC BY-NC 4.0)

(https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and

building upon the work for non-commercial use, provided the original work is properly cited.

http://www.ijsshr.in/

