VOlUME 06 ISSUE 07 JULY 2023
1,2Everton Luis Rodrigues Cirillo,3Israel Teoldo,2Fabiane Tavares Cirillo,1Alberto Pompeo,4Marcelo Angelo Cirillo,2Antônio Carlos Dourado,5,6José Vilaça-Alves,1Filipe Casanova
1Research Center for Sport, Physical Education, Exercise and Health (CIDEFES), Lusófona University, 1749-024, Portugal
2Sports Science Department, State University of Londrina (UEL), Londrina, 86057-970, Brazil
3Center of Research and Studies in Soccer, Federal University of Viçosa (UFV), 36570-900, Brazil
4Department of Exact Sciences, Federal University of Lavras (UFLA), Lavras, 37203-202, Brazil
5Department of Sport, Exercise and Health Sciences at the University of Trás-os-Montes and Alto Douro, Vila Real 5000, Portugal
6Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano (CIDESD), Vila Real 5000, Portugal
DOI : https://doi.org/10.47191/ijsshr/v6-i7-65Google Scholar Download Pdf
ABSTRACT
Team invasion sports are characterized as ball games, played by two opponents, aiming to score points or goals. The aim intended to verify which team invasion sport presents a greater probability to obtain a higher phase angle (PhA) value, considering the age, time of practice, vertical jump tests and handgrip strength of young athletes. A total of 248 young athletes were evaluated. After performing the correlations between the PhA and categorical variables (sport and sex) and covariables (age, time of practice- t, squat jump- SJ, countermovement jump- CMJ, and handgrip strength left or right- HGSl or HGSr), we developed an equation from a logistic regression model, aiming to better interpret the probability to obtain a higher PhA. Our findings showed a significant correlation (p< 0.05) ranging from weak to moderate between the PhA and age (r=0.268), t (r =0.206), SJ (r=0.330), CMJ (r= 0.277), HGSr (r=0.537), and HGSl (r=0.523). Considering the median value of the PhA (7.7o) as a cut-off point, youth soccer players were the most likely to have 2.2 more chances to reach a higher PhA, followed by Futsal (2.13), and Rugby (2.01) players. Considering our equation, we suggested that higher PhA values predisposed the Soccer, Futsal and Rugby players to express greater jumping capacity or handgrip tests. Considering the advantage of using PhA as a marker of a healthy body composition profile, the magnitude of these probabilities to reach higher values of strength performance in young athletes may depend on the sport practiced and their exposure to specific training.
KEYWORDS:Sport Participation; Body Composition; Strength; Performance
REFERENCES
1) Lord, F., Pyne, D. B., Welvaert, M., & Mara, J. K. (2020). Methods of performance analysis in team invasion sports: A
systematic review. Journal of Sports Science., 38(20), 2338-2349.
2) Roschel, H., Tricoli, V., & Ugrinowitsch, C. (2011). Treinamento físico: considerações práticas e científicas. Revista
Brasileira de Educação Física Esporte, 25, 53-65.
3) Braz, T. V., Spigolon, L. M. P., & Borin, J. P. (2012). Caracterização dos meios e métodos de influência prática no
treinamento em futebolistas profissionais. Revista Brasileira de Ciência do Esporte, 34, 495-511.
4) Cattem, M. V. O., Sinforoso, B. T., Campa, F., & Koury, J. C. (2021). Bioimpedance vector patterns according to age
and handgrip strength in adolescent male and female athletes [Article]. International Journal Environmental Research
Public Health, 18(11), Article 6069. https://doi.org/10.3390/ijerph18116069
5) Silva Neto, M., Simões, R, Grangeiro Neto, J. A., Cardone, C. P. (2010). Avaliação isocinética da força muscular em
atletas profissionais de futebol feminino. Revista Brasileira de Medicina do Esporte.;16:33-5.
6) Oliveira, S. d., Oliveira, S. L., Menezes, R. K. et al., (2016). Análise da força de preensão manual e risco cardiovascular
de adolescentes com Diabetes Melitos tipo 1. Revista Brasileira de Ciência e Movimento, 24(2), 5-14.
7) Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjöström, M. (2008). Physical fitness in childhood and adolescence: a
powerful marker of health. International Journal Obesety, 32(1), 1-11.
8) Bongiovanni, T., Rossi, A., Trecroci, A., et al., (2022). Regional Bioelectrical Phase Angle Is More Informative than
Whole-Body Phase Angle for Monitoring Neuromuscular Performance: A Pilot Study in Elite Young Soccer Players.
Sports, 10(5), Article 66. https://doi.org/10.3390/sports10050066
9) Cirillo, E. L. R., Pompeo, A., Cirillo, F. T. et al., (2023). As relações entre a composição corporal, ângulo de fase da
bioimpedância e força em adolescentes atletas paranaenses. In (Vol. 8). Portugal: Motricidade.
10) Souza, M. F., Tomeleri, C. M., Ribeiro, A. S. et al., (2017). Effect of resistance training on phase angle in older women:
A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports, 27(11), 1308-1316.
11) Hetherington-Rauth, M., Leu, C. G., Júdice, P. B. et al., (2021). Whole body and regional phase angle as indicators of
muscular performance in athletes. European Journal Sport Science., 1-9.
https://doi.org/10.1080/17461391.2020.1858971
12) Ribeiro, A. S., Avelar, A., dos Santos, L. et al., (2017). Hypertrophy-type resistance training improves phase angle in
young adult men and women. International Journal Sports Medicine, 38(01), 35-40.
13) Kołodziej, M., Koźlenia, D., Kochan-Jacheć, K., & Domaradzki, J. (2020). Bioelectrical impedance components and the
mass and strength of upper limb skeletal muscles in young adults [Article]. Human Movement Science, 21(4), 111-117.
https://doi.org/10.5114/hm.2020.95989
14) Bosy‐Westphal, A., Danielzik, S., Dörhöfer, R. P. et al., (2006). Phase angle from bioelectrical impedance analysis:
population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition., 30(4), 309-316.
15) Gonzalez, M. C., Barbosa-Silva, T. G., Bielemann, R. M., Gallagher, D., & Heymsfield, S. B. (2016). Phase angle and its
determinants in healthy subjects: influence of body composition. The American Journal of Clinical Nutrition., 103(3),
712-716.
16) Barbosa-Silva, M. C. G., Barros, A. J. D., Wang, J., Heymsfield, S. B., & Pierson Jr, R. N. (2005). Bioelectrical
impedance analysis: population reference values for phase angle by age and sex –. The American Journal of Clinical
Nutrition., 82(1), 49-52.
17) Kyle, U. G., Genton, L., Slosman, D. O., & Pichard, C. (2001). Fat-free and fat mass percentiles in 5225 healthy subjects
aged 15 to 98 years. Nutrition, 17(7-8), 534-541.
18) Marra, M., Da Prat, B., Montagnese, C. et al., (2016). Segmental bioimpedance analysis in professional cyclists during a
three week stage race [Article]. Physiological Measurement, 37(7), 1035-1040. https://doi.org/10.1088/0967-
3334/37/7/1035
19) Bongiovanni, T., Rossi, A., Iaia, F. M. et al., A. (2021). Association of phase angle and appendicular upper and lower
body lean soft tissue with physical performance in young elite soccer players: a pilot study. The Journal of Sports
Medicine and Physical Fitness.
20) Bongiovanni, T., Trecroci, A., Rossi, A. et al. (2021). Association between change in regional phase angle and jump
performance: a pilot study in serie a soccer players [Article]. European Journal of Investigation in Health, Psychology
and Education, 11(3), 860-865. https://doi.org/10.3390/ejihpe11030063
21) Cesanelli, L., Ammar, A., Arede, J., Calleja-González, J., & Leite, N. (2022). Performance indicators and functional
adaptive windows in competitive cyclists: effect of one-year strength and conditioning training programme. Biology of
Sport, 39(2), 329-340,.
22) Honorato, R. C., Soares Marreiros Ferraz, A., Kassiano, W. et al., (2022). Regional phase angle, not whole-body, is
augmented in response to pre-season in professional soccer players. Research in Sports Medicine, 1-15.
https://doi.org/10.1080/15438627.2022.2052069
23) Di Vincenzo, O., Marra, M., & Scalfi, L. (2019). Bioelectrical impedance phase angle in sport: a systematic review.
Journal of the International Society of Sports Nutrition, 16(1), Article 49. https://doi.org/10.1186/s12970-019-0319-2
24) Koury, J. C., Trugo, N. M. F., & Torres, A. G. (2014). Phase angle and bioelectrical impedance vectors in adolescent and
adult male athletes. The International Journal of Sports Physiology and Performance, 9(5), 798-804.
25) Verma, J. P., & Verma, P. (2020). Determining sample size and power in research studies. Springer.
26) Moura, P. M. d. L. S., Moreira, D., & Caixeta, A. P. L. (2008). Força de preensão palmar em crianças e adolescentes
saudáveis. Revista Paulista de Pediatria, 26, 290-294.
27) Bosco, C., Montanari, G., Ribacchi, R. et al., M. (1987). Relationship between the efficiency of muscular work during
jumping and the energetics of running. European Journal of Applied Physiology, 56, 138-143.
28) Field, A. (2009). Descobrindo a estatística usando o SPSS-5. Penso Editora, (Chapter 6, p. 221 - 264).
29) Maroco, J. Análise estatística com utilização do SPSS (2007). (Chapter 15 - Regressão Categorial/Regressão Logística,
684-740), Edições Sílabo.
30) Campa, F., Thomas, D. M., Watts, K. et al., (2022). Reference Percentiles for Bioelectrical Phase Angle in Athletes.
Biology-Basel, 11(2), Article 264,. https://doi.org/10.3390/biology11020264
31) Di Vincenzo, O., Marra, M., Sammarco, R. et al., (2020). Body composition, segmental bioimpedance phase angle and
muscular strength in professional volleyball players compared to a control group [Article]. The Journal of Sports
Medicine and Physical Fitness, 60(6), 870-874. https://doi.org/10.23736/S0022-4707.20.10548-6
32) Obayashi, H., Ikuta, Y., Fujishita, H. et al., (2021). The relevance of whole or segmental body bioelectrical impedance
phase angle and physical performance in adolescent athletes. Physiological Measurement, 42(3), Article 035011.
https://doi.org/10.1088/1361-6579/abed35
33) Koury, J. C., de Oliveira-Junior, A. V., Portugal, M. R. C., de Oliveira, K. d. J. F., & Donangelo, C. M. (2018).
Bioimpedance parameters in adolescent athletes in relation to bone maturity and biochemical zinc indices. Journal of
Trace Elements in Medicine and Biology, 46, 26-31,.
34) Campa, F., Silva, A. M., Iannuzzi, V. et al., S. (2019). The role of somatic maturation on bioimpedance patterns and
body composition in male elite youth soccer players [Article]. International Journal of Environmental Research and
Public Health, 16(23), Article 4711. https://doi.org/10.3390/ijerph16234711
35) Matias, C. N., Campa, F., Cerullo, G. et al., (2022). Bioelectrical Impedance Vector Analysis Discriminates Aerobic
Power in Futsal Players: The Role of Body Composition. Biology-Basel, 11(4), Article 505.
https://doi.org/10.3390/biology11040505
36) Di Credico, A., Gaggi, G., Vamvakis, A. et al., P. (2021) Bioelectrical impedance vector analysis of young elite team
handball players [Article]. International Journal of Environmental Research and Public Health, 18(24), Article 2972,.
https://doi.org/10.3390/ijerph182412972