Volume 07 Issue 09 September 2024
1Muhammad Farhansyah Mondari, 2Putri Fariska
1,2School of Economics and Business, Telkom University, Bandung, Indonesia
DOI : https://doi.org/10.47191/ijsshr/v7-i09-30Google Scholar Download Pdf
ABSTRACT
One innovation brought about by fintech is peer-to-peer lending. However, in recent years with rapid growth, unfortunately, there are still many negative sentiments about the peer-to-peer lending industry. Especially with the advancement of technology and the internet, all information about peer-to-peer lending is easily accessible through social media. The amount of negative information about peer-to-peer lending can influence opinions or sentiments towards the performance of peer-to-peer lending platforms and invite the public to comment on social media. Additionally, the gender factor of the information provider also affects the performance of the peer-to-peer market. Based on the explanation above, there has never been any previous research conducted in Indonesia, so this study will examine how the influence of social media information sentiment and the gender factor of the information provider affects peer-to-peer lending performance. The analysis method used is logistic regression, and the data used is obtained through machine learning using the Python programming language on Google Collab from social media opinions and the gender that provides opinions on social media. Meanwhile, the financial performance of peer-to-peer lending is taken from the annual performance report of the Financial Services Authority (OJK) by default. From the results of this study, it was found that the gender of the information provider affects the financial performance of peer-to-peer lending. However, simultaneously, social media sentiment and the gender of the information provider affect the financial performance of peer-to-peer lending.
KEYWORDS:Fintech, Peer-to-peer lending, Sentiment Analysis, Gender, Social Media, Machine learning, Naïve Bayes
REFERENCES1) Alamsyah, A., Ayu, S. P., & Rikumahu, B. (2019). Exploring Relationship between Headline News Sentiment and Stock Return. 2019 7th International Conference on Information and Communication Technology (ICoICT), 1–6. https://doi.org/10.1109/ICoICT.2019.8835298
2) Aliano, M., Alnabulsi, K., Cestari, G., & Ragni, S. (2023). Peer-to-Peer (P2P) Lending in Europe: Evaluating the Default Risk of Borrowers in the Context of Gender and Education. European Scientific Journal, ESJ, 19(7), 60. https://doi.org/10.19044/esj.2023.v19n7p60
3) Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of Internet stock message boards. Journal of Finance, 59(3), 1259–1294. https://doi.org/10.1111/j.1540-6261.2004.00662.x
4) Berendt, B. (2019). Text Mining for News and Blogs Analysis.
5) Bukovina, J. (2016). Social media big data and capital markets-An overview. In Journal of Behavioral and Experimental Finance (Vol. 11, pp. 18–26). Elsevier. https://doi.org/10.1016/j.jbef.2016.06.002
6) Chen, D., Lai, F., & Lin, Z. (2014). A trust model for online peer-to-peer lending: a lender’s perspective. Information Technology and Management, 15(4), 239–254. https://doi.org/10.1007/s10799-014-0187-z
7) Chen, Q., Li, J.-W., Liu, J.-G., Han, J.-T., Shi, Y., & Guo, X.-H. (2021). Borrower Learning Effects: Do Prior Experiences Promote Continuous Successes in Peer-to-Peer Lending? Information Systems Frontiers, 23(4), 963–986. https://doi.org/10.1007/s10796-020-10006-7
8) Chen, X., Huang, B., & Ye, D. (2020). Gender gap in peer-to-peer lending: Evidence from China. Journal of Banking & Finance, 112, 105633. https://doi.org/10.1016/j.jbankfin.2019.105633
9) Cheong, C. W. H., Sinnakkannu, J., & Ramasamy, S. (2017). Reactive or proactive? Investor sentiment as a driver of corporate social responsibility. Research in International Business and Finance, 42, 572–582. a. https://doi.org/10.1016/j.ribaf.2017.07.002
10) Choi, J. J., Laibson, D., Madrian, B. C., & Metrick, A. (2002). Defined Contribution Pensions: Plan Rules, Participant Choices, and the Path of Least Resistance. Tax Policy and the Economy, 16, 67–113. https://doi.org/10.1086/654750
11) Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1). https://doi.org/10.1186/s40537-015-0015-2
12) Fariska, P., Nugraha, N., Putera, I., & Rohandi, M. M. A. (2021). Microblogging Sentiment Investor, Return and Volatility in the COVID-19 Era: Indonesian Stock Exchange. Journal of Asian Finance, 8(3), 61–67. a. https://doi.org/10.13106/jafeb.2021.vol8.no3.0061
13) Fuller, R. J. (2000). BEHAVIORAL FINANCE AND THE SOURCES OF ALPHA.
14) Gatner. (2015). Big Data. www.gartner.com/it-glossary/big-data
15) Ghozali, I., Pamungkas, & Achmad. (2018). Corporate Governance Mechanisms in Preventing Accounting Fraud: A study of Fraud Pentagon Model. https://www.researchgate.net/publication/327644845
16) Glaser, M., Langer, T., Reynders, J., & Weber, M. (2007). Framing Effects in Stock Market Forecasts: The Difference Between Asking for Prices and Asking for Returns*. Review of Finance, 11(2), 325–357. a. https://doi.org/10.1093/rof/rfm008
17) Gupta, S., Mahajan, J., & Saxena, A. (2022). Measuring Consumer Perception for P2P Platform: NLP Approach. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–5. https://doi.org/10.1109/CONIT55038.2022.9848083
18) Halevi, G., Henk, E., & Moed, F. (2011). Research Trends Research Trends Volume 1 Issue 30 Article 2 9-1-2012 Overview of the literature. In Research Trends (Vol. 1, Issue 2). a. https://www.researchtrends.com/researchtrendsAvailableat:https://www.researchtrends.com/researchtrends/vol1/iss30/2
19) Haryanto, H. (2022). Dampak Behavioral Finance Terhadap Keputusan Investasi dengan Persepsi Risiko sebagai Variabel Moderasi. In AJournal Management (Vol. 21, Issue 2).
20) Hasan. (2011). Pokok-Pokok Materi Statistik 2 (Statistik Inferensif), edisi kedua (pp. 254–300).
21) kahneman, daniel. (1979). PROSPECT THEORY: AN ANALYSIS OF DECISION UNDER RISK.
22) Khan, M. T. I. (2022). Trust in peer-to-peer (P2P) lending platforms in Malaysia: understanding the determinants from retail investors’ perspectives. Journal of Economic and Administrative Sciences. https://doi.org/10.1108/JEAS-08-2021-0148
23) Kuang, J., Ji, X., Cheng, P., & Kallinterakis, V. B. (2023). Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market. Systems, 11(3), 133. https://doi.org/10.3390/systems11030133
24) Maharani, B., & Hidayah, N. (2021). Peran Media Sosial dalam Pengambilan Keputusan Investasi. Jurnal Akuntansi Trisakti, 8(2), 275–286. https://doi.org/10.25105/jat.v8i2.9926
25) Marginingsih. (2017). Penilaian Kinerja Perusahaan Dengan Menggunakan Analisa Rasio Keuangan Pada Perusahaan Telekomunikasi Di Indonesia. XVII(1).
26) Michels, J. (2012). Do Unverifiable Disclosures Matter? Evidence from Peer-to-Peer Lending. The Accounting Review, 87(4), 1385–1413. https://doi.org/10.2308/accr-50159
27) Mubarak, R. (2021). PENGANTAR EKONOMETRIKA Edisi Pertama.
28) Nofsinger, J. R. (2005). Social Mood and Financial Economics. Journal of Behavioral Finance, 6(3), 144–160. https://doi.org/10.1207/s15427579jpfm0603_4
29) Pengnate, S. (Fone), & Riggins, F. J. (2020). The role of emotion in P2P microfinance funding: A sentiment analysis approach. International Journal of Information Management, 54, 102138. https://doi.org/10.1016/j.ijinfomgt.2020.102138
30) POHAN, N. W. A., BUDI, I., & SURYONO, R. R. (2020). Borrower Sentiment on P2P Lending in Indonesia Based on Google Playstore Reviews. Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019). https://doi.org/10.2991/aisr.k.200424.003
31) Putri, B. M., & Wibisono, H. (2022). Financial Technology in Indonesia: Effect of Risk on Financial Performance in Peer-To-Peer Lending. KINERJA, 26(2). https://doi.org/10.24002/kinerja.v26i2.6185
32) Riley, N. E. (2019). Demography of Gender (pp. 107–142). https://doi.org/10.1007/978-3-030-10910-3_5
33) Saleh Ali, R., Wah Khaw, K., Gaber, A., & Alnoor, A. (2023). Peer-to-peer Online Lending Sentiment Analysis. In Applied Mathematics and Computational Intelligence (Vol. 12, Issue 2).
34) Sekaran U., & B. R. (2016). Research Methods for Business A Skill-Building Approach (7th ed.). John Wiley & Sons Ltd.
35) Shiller, R. J., Fischer, S., & Friedman, B. M. (1984). Stock Prices and Social Dynamics. Brookings Papers on Economic Activity, 1984(2), 457. https://doi.org/10.2307/2534436
36) Suryono, R. R., & Budi, I. (2020). P2P Lending Sentiment Analysis in Indonesian Online News. Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019). https://doi.org/10.2991/aisr.k.200424.006
37) Wang, C., Zhang, Y., Zhang, W., & Gong, X. (2021). Textual sentiment of comments and collapse of P2P platforms: Evidence from China’s P2P market. Elsevier,Research in International Business and Finance, 58, 101448. https://doi.org/10.1016/j.ribaf.2021.101448
38) Wang, M., Zhan, G., Lai, K. K., Zhang, L., & Meng, L. (2022). Posts and reviews in P2P online lending platforms: a sentiment analysis and cross-culture comparison. Behaviour & Information Technology, 41(16), 3591–3597. https://doi.org/10.1080/0144929X.2021.2005679
39) Wisudawati, D. T. (2017). THE 5 TH URECOL PROCEEDING ESTIMASI PARAMETER REGRESI LOGISTIK DENGAN METODE BOOTSTRAP DAN JACKKNIFE UNTUK SAMPEL KECIL.
40) Zhu, N., Baker, H. K. (Harold K., & Nofsinger, J. R. (2010). Behavioral finance: investors, corporations, and markets. Wiley.