Volume 08 Issue 03 March 2025
1LAKHLIFI Fatima-Zahrae, 2 IDRISSI Adil, 3ABDELLAOUI Mohammed, 4HABBANI Souad
1,2PhD Student, Sidi Mohamed Ben Abdellah University, Fez, Morocco
3,4Thesis supervisor, Professor, Sidi Mohamed Ben Abdellah University, Fez, Morocco
DOI : https://doi.org/10.47191/ijsshr/v8-i3-47Google Scholar Download Pdf
ABSTRACT
The rise of machine learning in predictive maintenance is redefining industrial strategies, and improving operational performance and business resilience in the face of disruptions. However, although this technology has demonstrated its potential in various sectors, the literature remains lacking regarding its precise impact in emerging economies, particularly in Morocco. This study proposes an innovative conceptual model, structuring the analysis of the links between the integration of machine learning, organizational factors, and industrial resilience. By mobilizing theoretical frameworks such as the theory of dynamic capabilities and that of complex adaptive systems, we highlight the mediating role of digital maturity, data diversity, and organizational flexibility in the optimization of predictive maintenance strategies. The proposed methodological approach is based on a mixed approach, combining a quantitative analysis using structural equation modeling (SEM), to empirically test the structural relationships, and a qualitative study using semi-structured interviews, aimed at contextualizing the dynamics underlying the adoption of machine learning. This methodological triangulation ensures robust validation of hypotheses and identifies the organizational and technological factors that determine the effectiveness of these tools. The expected results will contribute to a better understanding of the strategic levers that allow companies to fully exploit machine learning in predictive maintenance while proposing avenues for improvement for research and industrial practice. This study is thus part of an evolutionary perspective, paving the way for future empirical investigations on the optimal adoption of artificial intelligence technologies in Industry 4.0.
KEYWORDS:Machine learning, Research proposal, Resilience, Industry, Morocco
REFERENCES1) Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of manufacturing systems, 61, 530-535.
2) Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry.
3) Erro-Garcés, A. (2021). Industry 4.0: defining the research agenda. Benchmarking: an international journal, 28(5), 1858-1882.
4) GHOUBACH, S., & EL AMINE, B. (2024). Le rôle de l'optimisation des coûts logistiques à l’amélioration de l’efficacité des opérations de la chaîne d’approvisionnement. International Journal of Accounting, Finance, Auditing, Management and Economics, 5(4), 567-582.
5) Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competitors. New York: Free Press.
6) EL HADRI, S., & HEMMI, M. (2022). Une revue de littérature systémique sur la pratique des outils de pilotage par le coût dans les entreprises organisées par projets. Revue Française d'Economie et de Gestion, 3(10).
7) Lee, J., Bagheri, B., & Kao, H. A. (2014). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
8) Esteban, A., Zafra, A., & Ventura, S. (2022). Data mining in predictive maintenance systems: A taxonomy and systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(5), e1471.
9) Arena, F., Collotta, M., Luca, L., Ruggieri, M., & Termine, F. G. (2021). Predictive maintenance in the automotive sector: A literature review. Mathematical and Computational Applications, 27(1), 2.
10) Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors, 23(13), 5970.
11) Vollert, S., Atzmueller, M., & Theissler, A. (2021, September). Interpretable Machine Learning: A brief survey from the predictive maintenance perspective. In 2021 26th IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 01-08). IEEE.
12) Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4).
13) Baloglu, O., Latifi, S. Q., & Nazha, A. (2022). What is machine learning? Archives of Disease in Childhood-Education and Practice, 107(5), 386-388.
14) Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, 10(07), 3897-3904.
15) Cerezo, M., Verdon, G., Huang, H. Y., Cincio, L., & Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science, 2(9), 567-576.
16) Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., & Dou, D. (2022). From distributed machine learning to federated learning: A survey. Knowledge and Information Systems, 64(4), 885-917.
17) Shetty, S. H., Shetty, S., Singh, C., & Rao, A. (2022). Supervised machine learning: algorithms and applications. Fundamentals and methods of machine and deep learning: algorithms, tools and applications, 1-16.
18) Bachute, M. R., & Subhedar, J. M. (2021). Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications, 6, 100164.
19) Naidu, G., Zuva, T., & Sibanda, E. M. (2023, April). A review of evaluation metrics in machine learning algorithms. In Computer science on-line conference (pp. 15-25). Cham: Springer International Publishing.
20) Rachmawati, S. M., Kim, D. S., & Lee, J. M. (2021, October). Machine learning algorithm in network traffic classification. In 2021 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1010-1013). IEEE.
21) Cen, J., Yang, Z., Liu, X., Xiong, J., & Chen, H. (2022). A review of data-driven machinery fault diagnosis using machine learning algorithms. Journal of Vibration Engineering & Technologies, 10(7), 2481-2507.
22) Fu, Y., Downey, A. R., Yuan, L., Zhang, T., Pratt, A., & Balogun, Y. (2022). Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. Journal of Manufacturing Processes, 75, 693-710
23) Wang, X., Mazumder, R. K., Salarieh, B., Salman, A. M., Shafieezadeh, A., & Li, Y. (2022). Machine learning for risk and resilience assessment in structural engineering: Progress and future trends. Journal of Structural Engineering, 148(8), 03122003.
24) Alkhaleel, B. A. (2024). Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review. International Journal of Critical Infrastructure Protection, 44, 100646.
25) Fan, W., Chen, Y., Li, J., Sun, Y., Feng, J., Hassanin, H., & Sareh, P. (2021, October). Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. In Structures (Vol. 33, pp. 3954-3963). Elsevier.
26) Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319-1350.
27) Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
28) Rosenberg, N. (1982). Inside the black box: Technology and economics. Cambridge University Press.
29) Hopkin, P. (2018). Fundamentals of risk management: Understanding, evaluating and implementing effective risk management. Kogan Page Publishers.